

Biological Forum – An International Journal

14(4): 684-691(2022)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

# Evaluation of Cowpea Genotypes for Quantitative, Yield, Chlorophyll and NDVI status at Eastern Dry Zone of Karnataka

Poornima, R.<sup>1</sup>\*, Shyamalamma, S.<sup>2</sup>, Hanumanthappa, D.C.<sup>3</sup>, Krishna, T.V.<sup>4</sup>, Mohan Chavan<sup>5</sup> and Nagesha, N.<sup>5</sup>

<sup>1</sup>Ph.D. Scholar and Assistant Professor, Department of Plant Biotechnology, College of Agriculture (Karnataka), India.
<sup>2</sup>Professor and Head, Department of Plant Biotechnology, College of Agriculture, GKVK (Karnataka), India.
<sup>3</sup>Associate Professor of Agronomy, AICRP on Agroforestry, ZARS, GKVK (Karnataka), India.
<sup>4</sup>Jr. Breeder, AICRP on Arid legumes, Zonal Agricultural Research Station, GKVK (Karnataka), India.
<sup>5</sup>Assistant Professor, Department of Plant Biotechnology, College of Agriculture,

GKVK University of Agricultural Sciences, Bangalore-560065 (Karnataka), India.

(Corresponding author: Poornima, R.\*) (Received 11 September 2022, Accepted 25 October, 2022) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Cowpea is one of the important legume crop having higher amounts of proteins, calories, minerals and vitamins. Currently cultivating varieties are less productive in tropics and sub tropics. The development and use of potential cultivars offer a simple and cost effective method to produce higher yield with less inputs. Hence, field experiment on cowpea genotypes for growth, yield, chlorophyll and NDVI status was carried out at eastern dry zone of Karnataka, ZARS, University of Agricultural Sciences, GKVK, Bangalore, INDIA from July 2021 to November 2021. There were 55 cowpea genotypes including five checks were evaluated in randomized complete block design with three replications. The results of the field experiment showed that, significant differences among all the cowpea genotypes for all the quantitative traits, yield parameters, Chlorophyll and NDVI status. The grain yield was ranged from 737 to 2650 kgha<sup>1</sup>. Significantly higher grain yield was recorded by IC-219489 (2650 kg ha<sup>1</sup>) over other genotypes and which was on par with C-152, IC-402175, NBC-42, KBC-2, IC-402135, IC-462099 and IC-422174 (2544, 2507, 2458, 2409, 2286, 2208 and 2189 kg ha<sup>-1</sup>, respectively) genotypes. Higher yield of IC-219489 genotype was mainly due to production of more trifoliate leaves (38), more SPAD chlorophyll content (50.9 and 79.67 at 30 and 60 days after sowing, respectively) and NDVI (0.69 and 0.74 at 30 and 60 days after sowing, respectively) which were helped in accumulating more solar energy in terms of higher seed weight  $(22.09 \text{ g plant}^{-1})$  and 100 seed weight (14.25 g).

Keywords: Cowpea genotypes, NDVI, quantitative traits, SPAD Chlorophyll.

### INTRODUCTION

Cowpea (Vigna unguiculata (L.) Walp.), one of the most important food legumes grown and consumed in the arid and semi-arid regions of the world. Its grain contains higher amounts of essential nutrients viz., calcium (826 mg/kg) and iron (53.2 mg/kg) than that of meat, fish and egg which are very useful in blood cholesterol reduction (Rangel et al., 2003, Achuba, 2006 and Boukar et al., 2019). Its grain also contains protein to the tune of 250 mg/g, zinc (38.1 mg/kg), and magnesium (1915 mg/kg) (Boukar et al., 2019). Young and succulent leaves and pods are used as cooked vegetable, while the grains are ground and processed into powder for making thick porridge, gravy or sometimes consumed as a boiled delicacy (Silva, 2018). It can be used as an important companion crop in mixed cropping systems to suppress weed infestation and to

enhance soil fertility by fixing around 70 to 350kg/ha of atmospheric nitrogen through symbiosis with the root nodule bacteria Rhizobium (Meena et al., 2015). It is cultivating under low soil fertility and dry-land conditions as the most resilient legume crop in India. Cowpea growth pattern, seed maturity period is extremely diverse and more complex than other crops. Globally it is cultivated in 14.5 million hectares with the production of 6.5 million tons per annum (FAO 2018). In India, the mean grain yields of cowpea is between 249 to 980kg/ha which is far less than the potential yield 3t per hectare elsewhere (Molosiwa et al., 2016). A major constraint to achieve this production of cowpea grains in the tropics and sub tropics is lack of high yielding cultivars and poor cultivation practices. Therefore, development of best performing, locally adaptable potential cultivars offer a simple and cost

Poornima et al., Biologica

Biological Forum – An International Journal 14(4): 684-691(2022)

effective method to produce higher yield with less inputs for sustainable production. With this background, the present study was undertaken to evaluate the performance of 55 cowpea genotypes for their quantitative traits, yield, Chlorophyll content and NDVI status at eastern dry zone of Karnataka.

### MATERIALS AND METHODS

## A. Experimental Location and Source of Cowpea Genotypes

Field experiment was carried out at Zonal Agricultural Research Station, University of Agricultural Sciences, GKVK, Bangalore, Karnataka state, India. The field study was conducted at the "L" block of Krishimela demo unit from July 2021 to November 2021. The experimental site is situated in the Eastern Dry Zone (Zone-5) which is located between 12° 51' N Latitude and 77° 35' E Longitude at an altitude of 930 m above

mean sea level (MSL). The experiment was done with the aim of identifying the cowpea genotypes for higher growth, yield parameters, Chlorophyll and NDVI content. Totally 55 genotypes mentioned in the results tables were collected from All India Coordinated Research Project on Arid Legumes, Bangalore centre and used for the study.

### B. Soil and its characteristics

The experimental soil was red sandy clay loam. The methodology adopted for assessing soil physical and chemical properties are furnished in Table 1. The moisture content at field capacity was 24.63 per cent with a bulk density of 1.39 g cc<sup>-1</sup>. The experimental site was slightly acidic in nature (pH 6.12) with medium electrical conductivity (0.23dS m<sup>-1</sup>) and organic carbon content was low (0.42%). It had medium available nitrogen (283.0 kg ha<sup>-1</sup>), phosphorus (55.5 kg ha<sup>-1</sup>) and potassium (238.6 kg ha<sup>-1</sup>) status.

Table 1: Methods adopted for assessing soil physical and chemical properties and values recorded.

| Soil property                                    | Value | Method followed                         |
|--------------------------------------------------|-------|-----------------------------------------|
| 1. Coarse Sand (%)                               | 33.30 |                                         |
| 2. Fine sand (%)                                 | 36.30 | International pipette method            |
| 3. Silt (%)                                      | 07.40 | (Piper, 2002)                           |
| 4. Clay (%)                                      | 23.00 |                                         |
| 5. Soil textural class                           |       | Red sandy clay loam                     |
| 6. Field capacity (%)                            | 24.63 | Field method (Colmann, 1954)            |
| 7. Permanent wilting point (%)                   | 7.05  | Field method (Richards, 1954)           |
| 8. Bulk density (g $cc^{-1}$ )                   | 1.39  | Core sampler (Piper, 2002)              |
| 9. pH (1:2.5)                                    | 6.12  | Potentiometry (Jackson, 1973)           |
| 10. EC $(1:2.5)$ $(dSm^{-1})$                    | 0.23  | Conductometry (Jackson, 1973)           |
| 11 Organic carbon (%)                            | 0.42  | Wet oxidation method                    |
| 11. Organic carbon (%)                           | 0.42  | (Walkley and Black, 1934)               |
| 12 Available nitrogen (kg ha <sup>-1</sup> )     | 283.0 | Microkjeldahl distillation (Subbiah and |
| 12. Available introgen (kg ha )                  | 203.0 | Asija,1956)                             |
| 13. Available Phosphorous (kg ha <sup>-1</sup> ) | 55.5  | Spectrophotometry (Jackson, 1973)       |
| 14. Available Potassium (kg ha <sup>-1</sup> )   | 238.6 | Flame photometry (Jackson, 1973)        |

**Normal climatic conditions.** The normal annual rainfall of the station was 920 mm and the major part of rain was received between May to October and maximum rainfall was received during September and October. The normal mean minimum air temperature ranged between 14.0°C to 20.5°C Whereas, normal mean maximum air temperature ranged from 26.3°C to 33.8°C. The normal mean sunshine hours varied from 4.4 to 9.6 hours and normal mean monthly maximum relative humidity ranged from 76 to 90.0 per cent.

### C. Experimental Design and Procedure

During June 2021, the land was ploughed with tractor drawn cultivator followed by passing rotovator to bring the soil to fine tilth. Totally 165 plots each plot measured 1.5 m  $\times$  1.8 m. An alley of 1 m was left between plots. The experiment was laid out in a randomized complete block design (RCBD) and replicated three times. Farmyard manure @ 10 t ha<sup>-1</sup> was applied and mixed into the soil 15 days prior to

sowing. Shallow furrows spaced at 45 cm apart were opened using marker. Recommended dose of 25kg N, 50 kg  $P_2O_5$  and 20 kg  $K_2O$  were applied using DAP, urea and MoP as fertilizer source. Two cowpea seeds per spot were dibbled at 15 cm interval in the furrows on 27<sup>th</sup> July 2021. The seeds were covered with soil and gently compacted. Gap filling was done 10 days after sowing to ensure required population. Pendimethalin @ 1kg a.i ha<sup>-1</sup> was sprayed as pre-emergence application on second day after sowing and hand weeding once at 25 DAS followed by earthing up at 40 DAS was done for effective control of weeds and to provide favourable environment.

The plant height was measured from ground level to the tip of the main stem of randomly selected plants at harvest; the average height was computed and expressed in centimeters. Number of branches, trifoliate leaves and nodes were counted from randomly selected plants at harvest and their average was worked out as numbers per plant. The yield parameters *viz.*, days taken for 50 per cent flowering, petiole length, peduncle length, number of pods per plant, pod length, seed weight per plant, 100 seed weight, seed yield and haulm yield were recorded at harvest. Days to 50 per cent flowering was judged when 50 per cent of plants in net plot area flowered based on visual assessment and recorded in days. The pods were separated from the haulm when they turn brownish and dried in sun till they attain 10-12 % moisture.

Leaf chlorophyll content and NDVI status. Leaf chlorophyll content was measured at 30 and 60 DAS by using 'SPAD 502 plus' designed at LICOR, Ins. The SPAD 502 values recorded from randomly selected plants represent the chlorophyll content of the leaf. The GreenSeeker handheld optical sensor was used to measure NDVI from the crop canopy. The sensor angle was adjusted in such a way that it was parallel to sensing area at a height of about 60 cm above the canopy. The relative strength of the detected light is a direct indicator of the density of the foliate in the sensor's view. The higher the density and more vigorous the plant, the greater is the difference between the reflected light signals. The sensor displayed the measured value on its LCD.

### D. Statistical analysis

The experimental data recorded were subjected to statistical analysis adopting Fisher's method of analysis of variance as outlined by Gomez and Gomez (1984). Critical difference (CD) values are given in the table at 5 per cent level of significance.

### **RESULTS AND DISCUSSION**

## A. Growth and Yield Performance of Cowpea Genotypes

The data pertaining to plant height, number of branches, trifoliate leaves and nodes per plant of cowpea genotypes are presented in Tables 2. Mean plant height ranged from 45.0 to 75.0 cm and there were significant differences in plant height. Among the various cowpea genotypes, IC-402164 recorded the significantly taller plants (75.0 cm) at physiological maturity over other genotypes and which was on par with EC-170584-1-1, EC-394708, IC-422174, IC-402175 and IC-219489 (74.0, 72.0, 72.0, 71.9 and 70.7 cm, respectively). Similarly, number of branches, trifoliate leaves and nodes per plant were ranged from 4.0 to 10.0, 18 to 49 and 4.4 to 7.9, respectively. Significantly higher number of branches (10.0) and trifoliate leaves (49) were noticed in NBC-16 genotype. Whereas, nodes per plant were found non-significant.

There was a positive relation between the leaves number and photosynthetic capability of plants. More number of leaves, greater in turn produces more leaf area and thus contributes to the additional photosynthetic ability of the plant. A higher rate and quantity of photosynthesis in turn decide the dry matter synthesis and its accumulation in different parts and finally result in higher yield.

The data pertaining to yield parameters and yield of cowpea genotypes are presented in Tables 3 and 4. The number of days taken to 50% flowering varied significantly from 48.3 to 58.3 days. IC-462099 genotype took significantly more days for 50% of the plants to flower compared to the other cowpea genotypes. The least number of days taken for 50% flowering was 48.3 days by IC-402162 and CIG-3 genotypes. Lengthy petiole (19.8 cm) was found in IC-603187 over other genotypes and least length of 8.9 cm was recorded in EC-438480 genotype. Similarly, larger peduncles (47.0 cm) was observed in IC-202781 and lesser peduncle length was noticed in IC-249593 (26.7 cm). There were significant differences in the number of pods produced per plant for the cowpea genotypes. IC-402175 produced significantly more pods per plant (67.8 pods) than the other genotypes, with the exception of IC-402162, IC-402164, C-331 and IC-219489 which were recorded 67.0, 67.07, 65.67 and 65.0 pods, respectively. In general, higher the number of pods/ plants more pod yield is obtained but some of the scientists reported that, fruit size (length and diameter) and weight of individual pod is also determining factor for yield estimation. Pandey and Singh (2011) also reported the significant variation in number of pods per plant among the different varieties of cowpea, which is similar in the present experiment.

Pod length was ranged from 8.4 cm (IC-462099) to 18.9 (IC-219489). NBC-44 produced significantly the heaviest 100-seed weight (15.64 g). The least 100-seed weight was produced by IC-402162 (4.47 g). Magashi *et al.* (2014) reported that pod length varied from 13.77 cm to 16.50 cm under Nigerian condition.

Significantly higher grain yield was recorded by IC-219489 (2650 kg ha<sup>-1</sup>) over other genotypes and which was on par with C-152, IC-402175, NBC-42, KBC-2, IC-402135, IC-462099 and IC-422174 (2544, 2507, 2458, 2409, 2286, 2208 and 2189 kg ha<sup>-1</sup>, respectively) genotypes.

## Chlorophyll and NDVI content in Cowpea Genotypes

Chlorophyll content and Normalized Difference Vegetation Index are a measure of greenness of leaves and total biomass which could be used for mid-season prediction of final grain yield. Tables 5 present the results of Chlorophyll content (SPAD readings) and green seeker readings of cowpea genotypes. Higher yield of IC-219489 genotype was due to more SPAD chlorophyll content (50.9 and 79.67 at 30 and 60 days after sowing, respectively) and NDVI values (0.69 and 0.74 at 30 and 60 days after sowing, respectively) which intern resulted in accumulating more solar energy in terms of higher seed weight (22.09 g plant<sup>-1</sup>) and 100 seed weight (14.25 g).

Poornima et al., Biological Forum – An International Journal 14(4): 684-691(2022)

| Sr. No. | Genotypes            | Plant height (cm) | Branches per plant | Trifoliate leaves per<br>plant | Nodes per plant |
|---------|----------------------|-------------------|--------------------|--------------------------------|-----------------|
| 1       | C-24-1               | 60.00             | 7.70               | 48.00                          | 6.90            |
| 2       | C-331                | 60.00             | 8.00               | 36.00                          | 5.30            |
| 3       | EC-170584            | 55.00             | 7.00               | 28.00                          | 6.90            |
| 4       | EC-170584-1-1        | 74.00             | 6.70               | 32.00                          | 7.60            |
| 5       | EC-2591054           | 59.00             | 7.70               | 42.00                          | 6.90            |
| 6       | EC-394708            | 72.00             | 7.00               | 36.00                          | 7.00            |
| 7       | EC-394779            | 68.00             | 8.00               | 36.00                          | 6.40            |
| 8       | EC-394839            | 60.00             | 8.30               | 32.00                          | 6.60            |
| 9       | EC-458402            | 52.00             | 6.00               | 23.00                          | 6.60            |
| 10      | EC-458418            | 65.00             | 6.70               | 18.00                          | 7.20            |
| 11      | EC-458438            | 56.00             | 6.30               | 38.00                          | 7.90            |
| 12      | EC-458440            | 50.00             | 7.00               | 42.00                          | 4.80            |
| 13      | EC-458469            | 55.00             | 6.70               | 26.00                          | 6.40            |
| 14      | EC-438480            | 57.00             | 7.70               | 27.00                          | 4.40            |
| 15      | EC-458473            | 50.00             | 6.70               | 25.00                          | 5.30            |
| 16      | EC-458480            | 45.00             | 7.00               | 42.00                          | 5.40            |
| 17      | EC-458490            | 58.00             | 5.70               | 22.00                          | 7.20            |
| 18      | EC-472250            | 57.40             | 7.00               | 32.00                          | 6.90            |
| 19      | EC-472252            | 45.90             | 6 30               | 48.00                          | 4 60            |
| 20      | FC-472257            | 70.00             | 8 70               | 38.00                          | 6.40            |
| 20      | IC-4506              | 60.00             | 5.70               | 34.00                          | 7.80            |
| 21      | IC-101171            | 62.00             | 6 30               | 36.00                          | 6.70            |
| 22      | IC-202104            | 55.00             | 6.70               | 28.00                          | 5.90            |
| 23      | IC-202781            | 65.90             | 6.30               | 32.00                          | 7.40            |
| 24      | IC-202781            | 70.70             | 7.70               | <u> </u>                       | 7.40            |
| 25      | IC-219409            | 54.00             | 7.70               | 48.00                          | 5 70            |
| 20      | IC-249588            | 48.00             | 6.20               | 26.00                          | 3.70            |
| 27      | IC-249595            | 40.00<br>52.00    | 6.00               | 20.00                          | 6.20            |
| 20      | IC-2391034           | 65.00             | 5.20               | 24.00                          | 7.20            |
| 29      | IC-550990            | 70.00             | 0.00               | 24.00                          | 7.20            |
| 21      | IC-402048            | 70.00             | 9.00               | 36.00                          | 5.00            |
| 22      | IC-402090            | 58.00             | 7.70<br>8.20       | 30.00                          | <u> </u>        |
| 32      | IC-402155            | 65.90             | 6.30               | 32.00                          | 7.10            |
| 24      | IC-402134            | 40.00             | 0.30               | 30.00                          | 5.60            |
| 25      | IC-402162            | 07.00             | 7.00               | 42.00                          | 5.00            |
| 35      | IC-402104            | 75.00             | 8.00               | 42.00                          | 6.20            |
| 27      | IC-402173            | 71.90             | 0.70               | 20.00                          | 7.50            |
| 37      | IC-402182            | 50.00             | 7.00               | 21.00                          | 3.00            |
| 38      | IC-422174            | 72.00             | 8.00               | 38.00                          | 7.40            |
| 39      | IC-402099            | 55.00             | 0.30               | 22.00                          | 5.00            |
| 40      |                      | /0.00             | /./0               | 48.00                          | 6.90            |
| 41      | NBC 16               | 55.00             | 5.30               | 22.00                          | 5.40            |
| 42      | NBC - 10             | 60.00             | 9.00               | 49.00                          | /.00            |
| 43      | NBC - 39             | 62.00             | 8.00               | 25.00                          | 6.40            |
| 44      | NBC - 41             | 60.00             | 6.70               | 48.00                          | 6.10            |
| 45      | NBC - 42             | 62.00             | 6.00               | 30.00                          | 6.30            |
| 46      | NBC - 44             | 45.00             | 5.30               | 18.00                          | 5.20            |
| 41      | V - 16               | 66.00             | 7.00               | 38.00                          | 6.30            |
| 48      | V - 578©             | 54.00             | 7.30               | 42.00                          | 7.60            |
| 49      | V - 585              | 57.00             | 5.70               | 28.00                          | 5.90            |
| 50      | VC - 458492          | 67.90             | 4.00               | 35.00                          | 6.00            |
| 51      | VC - 604-7-29-3      | 59.70             | 5.00               | 23.00                          | 5.80            |
| 52      | Check KBC - 2        | 68.00             | 8.00               | 36.00                          | 6.90            |
| 53      | Check KBC - 9        | 66.00             | 7.70               | 28.00                          | 6.80            |
| 54      | Check C - 152        | 70.00             | 8.70               | 35.00                          | 6.80            |
| 55      | Check CIG - 3        | 53.90             | 8.00               | 34.00                          | 7.90            |
|         | S. Em ±              | 1.55              | 0.41               | 0.88                           | 0.83            |
|         | CD ( <i>p</i> =0.05) | 4.33              | 1.14               | 2.47                           | NS              |

### Table 2: Growth parameters of cowpea as influenced by genotypes.

| Sr. No. | Genotypes       | Days to 50% | Petiole length | peduncle length | Number of pods | pod length (cm) |
|---------|-----------------|-------------|----------------|-----------------|----------------|-----------------|
|         |                 | flowering   | (cm)           | (cm)            | per plant      | F 8 ( )         |
| 1       | C-24-1          | 50.7        | 12.4           | 29.3            | 15.67          | 12.00           |
| 2       | C-331           | 50.0        | 16.9           | 29.0            | 65.67          | 14.30           |
| 3       | EC-170584       | 48.7        | 12.5           | 29.0            | 21.33          | 17.10           |
| 4       | EC-170584-1-1   | 51.0        | 16.5           | 37.7            | 31.67          | 14.40           |
| 5       | EC-2591054      | 50.7        | 16.6           | 37.7            | 51.00          | 16.40           |
| 6       | EC-394708       | 49.3        | 16.8           | 40.3            | 45.00          | 15.30           |
| 7       | EC-394779       | 48.7        | 13.4           | 33.3            | 36.67          | 17.20           |
| 8       | EC-394839       | 49.7        | 13.8           | 38.3            | 54.67          | 17.60           |
| 9       | EC-458402       | 52.0        | 16.8           | 41.3            | 56.33          | 18.80           |
| 10      | EC-458418       | 50.3        | 16.8           | 32.0            | 24.33          | 13.90           |
| 11      | EC-458438       | 49.7        | 13.8           | 29.7            | 19.00          | 12.10           |
| 12      | EC-458440       | 49.3        | 13.8           | 38.0            | 50.33          | 15.10           |
| 13      | EC-458469       | 49.7        | 15.8           | 39.0            | 42.67          | 15.00           |
| 14      | EC-438480       | 51.3        | 8.9            | 44.3            | 36.00          | 11.80           |
| 15      | EC-458473       | 50.3        | 12.8           | 31.3            | 22.00          | 14.80           |
| 16      | EC-458480       | 49.7        | 11.4           | 32.3            | 31.67          | 13.10           |
| 17      | EC-458490       | 50.0        | 12.7           | 33.3            | 36.00          | 14.80           |
| 18      | EC-472250       | 54.7        | 11.9           | 42.3            | 36.00          | 15.20           |
| 19      | EC-472252       | 53.0        | 12.9           | 41.7            | 41.00          | 15.70           |
| 20      | EC-472257       | 51.0        | 15.8           | 41.0            | 49.67          | 14.80           |
| 21      | IC-4506         | 49.7        | 15.2           | 40.0            | 43.33          | 13.40           |
| 22      | IC-101171       | 50.3        | 16             | 37.7            | 53.33          | 16.10           |
| 23      | IC-202104       | 50.0        | 15.7           | 35.7            | 45.00          | 18.50           |
| 24      | IC-202781       | 51.3        | 14.8           | 47.0            | 53.00          | 16.80           |
| 25      | IC-219489       | 50.9        | 18.6           | 45.0            | 65.00          | 18.90           |
| 26      | IC-249588       | 49.7        | 16.8           | 37.7            | 16.00          | 16.00           |
| 27      | IC-249593       | 54.0        | 15.1           | 26.7            | 19.33          | 14.10           |
| 28      | IC-2591054      | 50.7        | 12.1           | 39.7            | 19.00          | 21.70           |
| 29      | IC-330996       | 53.3        | 17.4           | 26.0            | 50.67          | 18.00           |
| 30      | IC-402048       | 51.3        | 14.8           | 39.7            | 55.33          | 19.20           |
| 31      | IC-402090       | 50.3        | 16.4           | 38.7            | 63.00          | 17.70           |
| 32      | IC-402135       | 51.3        | 14.2           | 30.0            | 48.33          | 15.60           |
| 33      | IC-402154       | 51.0        | 12.4           | 34.3            | 39.87          | 13.90           |
| 34      | IC-402162       | 48.3        | 10.2           | 35.3            | 67.07          | 15.40           |
| 35      | IC-402164       | 53.3        | 18.7           | 43.0            | 67.00          | 19.10           |
| 36      | IC-402175       | 48.0        | 15.7           | 36.3            | 67.80          | 16.10           |
| 37      | IC-402182       | 54.3        | 13             | 34.7            | 15.67          | 12.20           |
| 38      | IC-422174       | 51.0        | 14.9           | 44.0            | 67.47          | 15.30           |
| 39      | IC-462099       | 58.3        | 11             | 42.3            | 9.07           | 8.40            |
| 40      | IC-603187       | 50.3        | 19.8           | 40.0            | 59.47          | 14.80           |
| 41      | NBC - 8         | 53.0        | 12.4           | 44.0            | 15.20          | 13.60           |
| 42      | NBC - 16        | 51.3        | 17.2           | 34.0            | 26.40          | 14.30           |
| 43      | NBC - 39        | 50.3        | 12.8           | 40.3            | 23.67          | 17.50           |
| 44      | NBC - 41        | 51.3        | 12.9           | 28.0            | 45.00          | 14.40           |
| 45      | NBC - 42        | 51.0        | 14.9           | 32.0            | 63.07          | 15.50           |
| 46      | NBC - 44        | 55.0        | 11.4           | 39.0            | 18.60          | 15.70           |
| 47      | V - 16          | 52.0        | 17.8           | 41.0            | 63.27          | 17.00           |
| 48      | V - 578©        | 50.7        | 15.1           | 41.0            | 53.47          | 14.20           |
| 49      | V - 585         | 55.0        | 15.7           | 36.7            | 25.53          | 16.20           |
| 50      | VC - 458492     | 53.0        | 18.6           | 45.0            | 60.73          | 15.40           |
| 51      | VC - 604-7-29-3 | 50.0        | 11.5           | 33.3            | 51.67          | 13.30           |
| 52      | KBC – 2©        | 51.3        | 16.6           | 32.3            | 65.07          | 18.00           |
| 53      | KBC – 9©        | 50.3        | 16.8           | 35.3            | 26.07          | 16.70           |
| 54      | C – 152©        | 49.3        | 17.7           | 37.0            | 20.27          | 14.20           |
| 55      | CIG – 3©        | 48.3        | 11.9           | 32.3            | 33.33          | 14.20           |
|         | S. Em ±         | 0.93        | 0.24           | 0.90            | 1.22           | 0.77            |
|         | CD (p=0.05)     | 2.61        | 0.66           | 2.52            | 3.42           | 2.16            |

## Table 3: Yield parameters as influenced by cowpea genotypes.

### Table 4: Yield of cowpea genotypes.

| Sr. No. | Genotypes          | Seed weight<br>(g plant <sup>-1</sup> ) | 100 seed<br>weight (g) | Seed yield<br>(kg ha <sup>-1</sup> ) | Haulm yield<br>(kg ha <sup>-1</sup> ) | Harvest Index<br>(H.I) |
|---------|--------------------|-----------------------------------------|------------------------|--------------------------------------|---------------------------------------|------------------------|
| 1       | C-24-1             | 12.53                                   | 8.44                   | 1503                                 | 2559                                  | 0.37                   |
| 2       | C-331              | 12.62                                   | 10.29                  | 1514                                 | 2495                                  | 0.38                   |
| 3       | EC-170584          | 10.79                                   | 9.96                   | 1294                                 | 2353                                  | 0.35                   |
| 4       | EC-170584-1-1      | 16.29                                   | 7.55                   | 1954                                 | 3120                                  | 0.39                   |
| 5       | EC-2591054         | 16.62                                   | 8.89                   | 1995                                 | 3095                                  | 0.39                   |
| 6       | EC-394708          | 12.49                                   | 8.44                   | 1498                                 | 2411                                  | 0.38                   |
| 7       | EC-394779          | 16.06                                   | 9.67                   | 1927                                 | 3172                                  | 0.38                   |
| 8       | EC-394839          | 14.28                                   | 12.83                  | 1713                                 | 2773                                  | 0.38                   |
| 9       | EC-458402          | 12.46                                   | 10.18                  | 1495                                 | 2280                                  | 0.40                   |
| 10      | EC-458418          | 12.96                                   | 7.97                   | 1556                                 | 2456                                  | 0.39                   |
| 11      | EC-458438          | 13.39                                   | 7.73                   | 1607                                 | 2450                                  | 0.40                   |
| 12      | EC-458440          | 16.04                                   | 6.96                   | 1924                                 | 2939                                  | 0.40                   |
| 13      | EC-458469          | 8.67                                    | 10.25                  | 1040                                 | 1586                                  | 0.40                   |
| 14      | EC-438480          | 13.93                                   | 7.09                   | 1672                                 | 2777                                  | 0.38                   |
| 15      | EC-458473          | 6.14                                    | 7.17                   | 737                                  | 1421                                  | 0.34                   |
| 16      | EC-458480          | 9.03                                    | 7.09                   | 1084                                 | 1922                                  | 0.36                   |
| 17      | EC-458490          | 11.17                                   | 7.97                   | 1340                                 | 2397                                  | 0.36                   |
| 18      | EC-472250          | 10.88                                   | 10.90                  | 1306                                 | 2156                                  | 0.38                   |
| 19      | EC-472252          | 12.82                                   | 12.10                  | 1538                                 | 2541                                  | 0.38                   |
| 20      | EC-472257          | 18.23                                   | 9.42                   | 2188                                 | 3619                                  | 0.38                   |
| 21      | IC-4506            | 11.56                                   | 7.77                   | 1388                                 | 2269                                  | 0.38                   |
| 22      | IC-101171          | 20.87                                   | 7.33                   | 2504                                 | 4071                                  | 0.38                   |
| 23      | IC-202104          | 18.05                                   | 8.69                   | 2166                                 | 3610                                  | 0.37                   |
| 24      | IC-202781          | 15.03                                   | 9.17                   | 18/6                                 | 3151                                  | 0.37                   |
| 25      | IC-219489          | 12.99                                   | 14.25                  | 2050                                 | 4303                                  | 0.38                   |
| 20      | IC-249588          | 12.33                                   | 9.50                   | 1482                                 | 2403                                  | 0.38                   |
| 27      | IC-249393          | 14.76                                   | 6.02                   | 1//4                                 | 2917                                  | 0.38                   |
| 28      | IC-2391034         | 12.07                                   | 8.40                   | 1448                                 | 3257                                  | 0.38                   |
| 30      | IC-402048          | 16.45                                   | 9.38                   | 1975                                 | 3269                                  | 0.38                   |
| 31      | IC-402090          | 11.64                                   | 9.60                   | 1396                                 | 2284                                  | 0.38                   |
| 32      | IC-402135          | 19.05                                   | 8.77                   | 2286                                 | 3489                                  | 0.50                   |
| 33      | IC-402154          | 7.31                                    | 7.67                   | 878                                  | 1339                                  | 0.40                   |
| 34      | IC-402162          | 13.91                                   | 4.47                   | 1669                                 | 2549                                  | 0.40                   |
| 35      | IC-402164          | 12.53                                   | 8.82                   | 1504                                 | 2369                                  | 0.39                   |
| 36      | IC-402175          | 20.89                                   | 6.76                   | 2507                                 | 4002                                  | 0.39                   |
| 37      | IC-402182          | 12.03                                   | 7.20                   | 1444                                 | 2370                                  | 0.38                   |
| 38      | IC-422174          | 18.16                                   | 7.49                   | 2180                                 | 3558                                  | 0.38                   |
| 39      | IC-462099          | 18.4                                    | 10.45                  | 2208                                 | 3762                                  | 0.37                   |
| 40      | IC-603187          | 12.51                                   | 8.23                   | 1501                                 | 2459                                  | 0.38                   |
| 41      | NBC - 8            | 13.48                                   | 16.14                  | 1618                                 | 2647                                  | 0.38                   |
| 42      | NBC - 16           | 9.59                                    | 8.66                   | 1150                                 | 1839                                  | 0.38                   |
| 43      | NBC - 39           | 18.04                                   | 9.26                   | 2165                                 | 3444                                  | 0.39                   |
| 44      | NBC - 41           | 14.09                                   | 6.84                   | 1691                                 | 2730                                  | 0.38                   |
| 45      | NBC - 42           | 20.49                                   | 8.39                   | 2458                                 | 3840                                  | 0.39                   |
| 46      | NBC - 44           | 15.08                                   | 15.61                  | 1810                                 | 2954                                  | 0.38                   |
| 47      | V - 16             | 12.92                                   | 8.01                   | 1550                                 | 2491                                  | 0.38                   |
| 48      | V - 578©           | 10.88                                   | 6.92                   | 1306                                 | 2198                                  | 0.37                   |
| 49      | V - 585            | 11.6/                                   | /.99                   | 1400                                 | 2412                                  | 0.37                   |
| 50      | VC - 438492        | 10.92                                   | 11.18                  | 1310                                 | 2235                                  | 0.37                   |
| 52      | VC - 004-7-29-3    | 15.05                                   | 10.53                  | 1304                                 | 2595                                  | 0.38                   |
| 52      |                    | 20.08                                   | 0.79                   | 2409                                 | 3077                                  | 0.40                   |
| 55      | C = 1520           | 21.07                                   | 7.40<br>7.01           | 2121                                 | 3057                                  | 0.39                   |
| 55      | C = 1520           | 17.68                                   | 0./2                   | 2344                                 | 3320                                  | 0.39                   |
| 55      | S Em +             | 1 / 100                                 | 0.02                   | 164.1                                | 227 2                                 | 0.37                   |
|         | CD (n=0.05)        | 3,05                                    | 0.02                   | 460 7                                | 638.0                                 | -                      |
|         | $\nabla p - 0.00)$ | 5.75                                    | 0.00                   |                                      | 0.0.0                                 |                        |

| <i>a</i> . N | Genotypes                        | SPAD mete  | er readings | NDVI values |        |  |
|--------------|----------------------------------|------------|-------------|-------------|--------|--|
| Sr. No.      |                                  | 30 DAS     | 60 DAS      | 30 DAS      | 60 DAS |  |
| 1            | C-24-1                           | 52.93      | 77.13       | 0.52        | 0.56   |  |
| 2            | C-331                            | 52.97      | 63.00       | 0.61        | 0.66   |  |
| 3            | EC-170584                        | 57.83      | 58.13       | 0.59        | 0.63   |  |
| 4            | EC-170584-1-1                    | 55.73      | 65.63       | 0.59        | 0.63   |  |
| 5            | EC-2591054                       | 48.70      | 54.97       | 0.69        | 0.74   |  |
| 6            | EC-394708                        | 53.97      | 71.37       | 0.52        | 0.56   |  |
| 7            | EC-394779                        | 51.80      | 62.30       | 0.54        | 0.57   |  |
| 8            | EC-394839                        | 43.03      | 54.07       | 0.61        | 0.65   |  |
| 9            | EC-458402                        | 48.77      | 52.67       | 0.60        | 0.64   |  |
| 10           | EC-458418                        | 56.07      | 67.43       | 0.58        | 0.62   |  |
| 11           | EC-458438                        | 50.00      | 56.10       | 0.61        | 0.65   |  |
| 12           | EC-458440                        | 48.30      | 73.37       | 0.34        | 0.36   |  |
| 13           | EC-458469                        | 54.77      | 62.80       | 0.45        | 0.48   |  |
| 14           | EC-438480                        | 42.87      | 56.47       | 0.27        | 0.29   |  |
| 15           | EC-458473                        | 50.43      | 55.90       | 0.43        | 0.46   |  |
| 16           | EC-458480                        | 56.93      | 62.20       | 0.62        | 0.67   |  |
| 17           | EC-458490                        | 57.77      | 66.13       | 0.59        | 0.63   |  |
| 18           | EC-472250                        | 49.77      | 57.20       | 0.30        | 0.33   |  |
| 19           | EC-472252                        | 50.83      | 61.80       | 0.35        | 0.38   |  |
| 20           | EC-472257                        | 49.33      | 59.60       | 0.64        | 0.69   |  |
| 21           | IC-4506                          | 48.00      | 61.33       | 0.64        | 0.69   |  |
| 22           | IC-10171                         | 54.20      | 72.23       | 0.69        | 0.74   |  |
| 23           | IC-202104                        | 54.23      | 65.43       | 0.56        | 0.59   |  |
| 24           | IC-202781                        | 49.70      | 74.03       | 0.71        | 0.77   |  |
| 25           | IC-219489                        | 50.90      | 79.67       | 0.64        | 0.68   |  |
| 26           | IC-249588                        | 60.33      | 59.60       | 0.58        | 0.62   |  |
| 27           | IC-249593                        | 55.40      | 60.70       | 0.57        | 0.61   |  |
| 28           | IC-2591054                       | 52.70      | 60.90       | 0.52        | 0.56   |  |
| 29           | IC-330996                        | 48.97      | 61.83       | 0.57        | 0.61   |  |
| 30           | IC-402048                        | 48.57      | 77.07       | 0.70        | 0.75   |  |
| 31           | IC-402090                        | 48.77      | 64.30       | 0.58        | 0.63   |  |
| 32           | IC-402135                        | 57.30      | 63.43       | 0.68        | 0.73   |  |
| 33           | IC-402154                        | 53.30      | 72.63       | 0.16        | 0.16   |  |
| 34           | IC-402162                        | 52.97      | 71.73       | 0.46        | 0.50   |  |
| 35           | IC-402164                        | 48.20      | 66.03       | 0.54        | 0.57   |  |
| 36           | IC-402175                        | 54.83      | 67.10       | 0.65        | 0.70   |  |
| 37           | IC-402182                        | 46.73      | 50.97       | 0.21        | 0.22   |  |
| 38           | IC-422174                        | 47.80      | 64.60       | 0.64        | 0.69   |  |
| 39           | IC-462099                        | 41.67      | 52.87       | 0.00        | 0.00   |  |
| 40           | IC-603187                        | 51.50      | 66.70       | 0.66        | 0.71   |  |
| 41           | NBC - 8                          | 40.97      | 59.40       | 0.35        | 0.37   |  |
| 42           | NBC - 16                         | 65.70      | 73.67       | 0.58        | 0.63   |  |
| 43           | NBC - 39                         | 45.80      | 65.53       | 0.55        | 0.58   |  |
| 44           | NBC - 41                         | 46.70      | 51.87       | 0.58        | 0.62   |  |
| 45           | NBC - 42                         | 53.40      | 57.30       | 0.64        | 0.69   |  |
| 46           | NBC - 44                         | 48.0/      | 66.90       | 0.40        | 0.43   |  |
| 47           | V - 16                           | 49.53      | 61.43       | 0.68        | 0.73   |  |
| 48           | V - 578 @                        | 43.30      | 51.77       | 0.63        | 0.68   |  |
| 49           | V - 585                          | 40.33      | 58.50       | 0.53        | 0.57   |  |
| 50           | VC - 458492                      | 55.63      | /5.03       | 0.50        | 0.54   |  |
| 51           | VU - 004-7-29-3                  | 49.43      | 15.21       | 0.40        | 0.48   |  |
| 52           | <u>KBC - 20</u><br><u>VBC 00</u> | 56.10      | 07.03       | 0.67        | 0.72   |  |
| 54           | NDU - 90                         | 52.50      | 50.90       | 0.05        | 0.70   |  |
| 54           | CIG 20                           | 52.50      | 59.80       | 0.65        | 0.70   |  |
|              |                                  | 34.47      | 02.80       | 0.03        | 0.07   |  |
|              | $5. \text{ Em } \pm $            | 4.02<br>NC | 1.03        | 0.09        | 0.09   |  |
|              | CD(p=0.05)                       | EVI S      | 4.57        | 0.24        | 0.26   |  |

### Table 5: SPAD Chlorophyll content and NDVI values of cowpea genotypes at 30 and 60 days after sowing.

### CONCLUSION

It could be concluded that IC-219489 genotype found to be the better to get higher grain yield (2650 kg ha<sup>-1</sup>) with higher SPAD chlorophyll values and NDVI values and next best genotypes for higher yield are C-152, IC-402175, NBC-42, KBC-2, IC-402135, IC-462099.

Acknowledgements. Poornima, R., Hanumanthappa, D.C. and Shymalamma, S., designed and carried out the experiment. Poornima, R., wrote the manuscript with the contributions and advice of Shymalamma, S. and Hanumanthappa, D.C. This research was financially supported by Sensor project, RKVY, GoK and AICRP / Agroforestry based IFS demo project and germplasms were provided by AICRP on Arid legumes, UAS, GKVK. We thank all of them for their support and necessary facilities.

### REFERENCES

- Achuba, F. I. (2006). The effect of subletethal concentration of crude oil on the growth and metabolism of cowpea (*Vigna unguiculata*) seedlings. *The Environmentalist*, 21(1), 17-20.
- Boukar, O., Massawe, F., Maranaka, S. and Franco, J. (2019). Evaluation of Cowpea Germplasm Lines for Protein and Mineral Concentrations in Grains. *Plant Genetic Resourc.*, 4, 515–22.
- Colman, E. A. (1954). The dependence of field capacity upon wheat. *Phyton.*, *19*, 5-10.
- Food Agriculture Organisation of United Nations (FAO), Rome. FAOSTAT Online Statistical Services: Crop Production Data. 2017. Available at. https://www.fao.org/faostat/en/#data. Accessed on 20 October 2018.
- Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedure for Agricultural Research – An International Rice Research Institute Book, A Wiley Interscience, John Wiley and Sons Inc., New York, USA.

- Jackson, M. L. (1973). *Soil Chemical Analysis*. Prentice Hall India Pvt. Ltd., New Delhi.
- Magashi, I., Musa, A., Fulani, S. and Ibrahim, M. (2014). Evaluation of the cowpea (Vigna ungiculata (L.) Walp) genotypes for some yield and root parameter and their usage in breeding programme for drought tolerance. International Journal of Advances in Agriculture and Environmental Engineering, 1, 34-37.
- Meena, H., Krishna, K. R. and Singh, B. (2015). Character associations between seed yield and its components traits in cowpea (*Vigna unguiculata* L.) Walp. Ind. J. Agricult. Res., 49(6), 567–70.
- Molosiwa, O. O., Chiyapo, G., Joshuah, M. and Stephen, M. C. (2016). Phenotypic Variation in Cowpea (Vigna unguiculata [L.] Walp.) Germplasm Collection from Botswana. Int. J. Biodiver. Conserv., 8(7), 153–63.
- Pandey, B. and Singh, Y. V. (2011). Genetic variability in indigenous and exotic varieties of cowpea. *Pantnagar Journal of Research* 9(2), 234-240.
- Piper, C. S. (2002). Soil and Plant Analysis, Academic Press, New York, pp. 47-77.
- Rangel, A., Domont, G. B., Pedrosa, C. and Ferreira, S. T. (2003). Functional properties of purified vicilins from cowpea (*Vigna unguiculata*) and pea (*Pisum sativum*) and cowpea protein isolate. *Journal of Agricultural* and Food Chemistry, 51, 5792–5797.
- Richards, L. A. (1954). *Diagnosis and improvement of saline* soils. USDA Hand Book No. 60. Oxford and IBH. Pub. Co., Bombay.
- Silva, A. (2018). Cowpea A Strategic Legume Species for Food Security and Health. *Legume Seed Nutraceutic Res. J.*, 10, 79–86.
- Subbiah, B. V. and Asija, G. L. (1956). A rapid procedure for estimation of available nitrogen in soils. *Curr. Sci.*, 25, 259-260.
- Walkley, A. J. and Black, C. A. (1934). An examination of the method for determining soil organic matter and a proposed modification of the chromic acid titration. *Soil Sci.*, 37, 28-29.

**How to cite this article:** Poornima, R., Shyamalamma, S., Hanumanthappa, D.C., Krishna, T.V., Mohan Chavan and Nagesha, N. (2022). Evaluation of cowpea genotypes for quantitative traits, yield, chlorophyll and NDVI status at eastern dry zone of Karnataka. *Biological Forum – An International Journal*, *14*(4): 684-691.